
Chapter 4

Stability

4.1 Autonomous systems

Now I switch to nonlinear systems. In this chapter the main object of study will be

ẋ = f(x), x(t) ∈ X ⊆ Rk, f : X −→ Rk, (4.1)

where f is supposed to be locally Lipschitz in X. The maximal solution at the point t with the initial
condition x(0) = x0 will be denoted usually as x(t;x0). Recall that the maximal solution through x0

does not have to be defined for all t and may exist on a shorter time interval I(x0) = (t−, t+) ⊆ R.

Definition 4.1. For each x0 ∈ X the set

γ(x0) = {x(t;x0) : t ∈ (t−, t+)}

is called the orbit through x0. The set

γ+(x0) = {x(t;x0) : t ∈ [0, t+)}

is called the positive semi-orbit through x0, and the set

γ−(x0) = {x(t;x0) : t ∈ (t−, 0]}

is called the negative semi-orbit through x0. I have

γ(x0) = γ−(x0) ∪ γ+(x0).

Positive semi-orbits are sometimes called forward orbits, and negative semi-orbits are sometimes
called backward orbits. Orbits are the images of the solutions t 7→ x(t;x0) to (4.1) parameterized by
the time t such that the directions along the orbits are defined. The orbits should not be confused
with the integral curves (the graphs of solutions in the extended phase space I × X). It should be
clear that the orbits are the projections of the integral curves onto the phase or state space X, and
therefore carry less information than the solutions themselves. A number of examples of orbits were
given when I discussed the phase portraits of the linear systems on the plane in the previous chapter.

Consider several important properties of the orbits of (4.1).
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1. If t 7→ x(t;x0) is a solution then t 7→ x(t− t0;x0) is also a solution for any constant t0 (it was
proved in Exercise 1.2, note that this fact is not true for non-autonomous systems). The orbits for
these two solutions coincide, and the solutions are different by a translation by t0 along the t-axis.
(If the maximal solution for t 7→ x(t;x0) is defined on I(x0), what is the interval of existence of the
maximal solution t 7→ x(t− t0;x0)?)

2. Two orbits either do not intersect or coincide. To prove it consider two solutions ϕ1 and ϕ2

and assume that the corresponding orbits have a common points, i.e., there are t1 and t2 such that
ϕ1(t1) = ϕ2(t2). Consider also ψ(t) = ϕ1(t+(t1− t2)). This is also a solution due to Property 1 with
the same orbit as defined by ϕ1. But ψ(t2) = ϕ2(t2), i.e., due to the uniqueness theorem ψ coincides
with ϕ2 and therefore the orbits corresponding to ϕ1 and ϕ2 coincide.

There is a direct connection between orbits and integral curves. Here is a two dimensional example.
Consider a planar autonomous system

ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2).

The orbits of this system are exactly the integral curves defined by

dx2
dx1

=
f2(x1, x2)

f1(x1, x2)
,

in those domains where f1(x1, x2) ̸= 0.
3. The simplest orbit is an equilibrium. By definition, x̂ ∈ X is an equilibrium of (4.1) if

γ(x̂) = {x̂},

i.e., if the corresponding orbit consists of just one point. The necessary and sufficient condition for x̂
to be an equilibrium is

f(x̂) = 0.

Equilibria are also called fixed points, stationary points, or rest points of the dynamical system (4.1).
Equilibria are the critical or singular points of the corresponding vector field f , because at these
points the vector field is undefined.

4. Recall that with every autonomous system (4.1) a dynamical system {X, I, φt} is identified such
that the group properties of the flow hold:

x(0;x0) = x0,

and
x(t1 + t2;x0) = x(t1;x(t2;x0)) = x(t2;x(t1;x0)), t1, t2, t1 + t2 ∈ I(x0).

Obviously, in my notation, φtx0 = x(t;x0).
5. An orbit different from an equilibrium is a smooth curve. This follows directly from Property 3.
6. Every orbit either a smooth curve without self intersection, or a smooth closed curve (cycle),

or a point. To each cycle corresponds a periodic solution.
To prove the last statement consider a cycle γ and take any point x0 on γ. Since the vector field

never vanishes on γ, after some time T the solution starting at x0 will return to x0, i.e., x(T ;x0) = x0.
Now take, for each fixed t, x(t+T ;x0), which is also a solution by Property 1. By the group property
I have x(t + T ;x0) = x(t;x(T ;x0)) = x(t;x0), which proves that the solution corresponding to a
cycle is T -periodic. The converse is trivial.

7. Rectification of a vector field.
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Lemma 4.2. Let a ∈ X be a non-equilibrium point of (4.1). Then in a small neighborhood of a there
exists a diffeomorphism x = ϕ(y) (i.e., a smooth change of the variables, the inverse to which is also
smooth) such that in the new coordinates y the vector field looks like a family of straight lines:

ẏ1 = 0, . . . , ẏk−1 = 0, ẏk = 1.

Proof. Without loss of generality I assume that fk(a) ̸= 0. Consider a hyperplane in Rk : xk = ak. Let
me take an initial condition from this hyperplane: x0 = (ξ1, . . . , ξk−1, ak) = (ξ, ak). Now consider a
solution t 7→ ϕ(t; ξ) to (4.1) such that ϕ(0; ξ) = (ξ, ak). I introduce new variables y1 = ξ1, . . . , yk−1 =
ξk−1, yk = t. Obviously, ẏ defines a family of straight lines in Rk. On the other hand I have that
x = ϕ(t; ξ) = ϕ(y), and I claim that this is the required change of variables. To finish the proof I need
only to check that it is invertible, with smooth inverse such that a = ϕ(b), where b = (ξ1, . . . , ξk−1, 0).
For this I compute the Jacobi matrix (see Section 2.9.1 if this term in not familiar) of ϕ at b by using
the fact that

ϕi(0; ξ) = ξi, i = 1, . . . , k − 1,

and
ϕk(0; ξ) = ak.

I find that

∂ϕi
∂yj

(b) = δij ,
∂ϕk
∂yj

= 0, i, j = 1, . . . , k − 1,
∂ϕk
∂yk

(b) =
∂ϕk
∂t

(b) = fk(a) ̸= 0,

which completes the proof, because the Jacobi matrix by construction has non-zero determinant (which
is equal to fk(a)) and hence invertible by the inverse function theorem (Section 2.9.1). Here δij is the
Kronecker symbol, which is equal to 1 if i = j and 0 otherwise. �

Exercise 4.1. Rectify the vector field of

ẋ1 = x2, ẋ2 = −x1

in a neighborhood of (x1, x2) = (1, 0). Hint: You are asked to find the change of the variables x = ϕ(y)
such that in the y coordinates the vector field is composed of the straight lines, and also prove that
this change of variables is invertible. Follow directly the proof of the lemma above.

Exercise 4.2. Find a diffeomorphism that rectifies the vector field of

ẋ1 = x21x2, ẋ2 = −x1x22,

is a neighborhood of (1, 1).

8. Liouville’s theorem. Consider again (4.1), and let {φt} denote the corresponding flow. Let D0

be a bounded area in X and m(D0) be its measure (volume). By definition, Dt := φt(D0), and I am
interested in how the measure of D0 changes under the flow of (4.1). I use the convenient nabla or

del operator ∇ =
(

∂
∂x1

, . . . , ∂
∂xk

)
to write the divergence of the function f , in coordinates:

div f = ∇ · f =
∂f1
∂x1

+ . . .+
∂fk
∂xk

.

89



Lemma 4.3. Let Vt = m(Dt). Then

d

dt
Vt

∣∣∣∣
t=0

=

∫
D0

∇ · f dx.

Proof. I have that

Vt =

∫
Dt

1 dx =

∫
D0

det

(
∂φt

∂x

)
dx,

due to the change of the variables formula for multiple integrals. For the flow {φt} Taylor’s formula
yields

φtx = x+ tf(x) +O(t2),

and therefore the Jacobi matrix ∂φt

∂x can be written as

∂φt

∂x
= I + t

∂f

∂x
+O(t2).

(I also used the notation f ′(x) to denote the Jacobi matrix before.) Using the formula for the
determinant det(I + tA) = 1 + t trA+O(t2), I find

det

(
∂φt

∂x

)
= 1 + t tr

∂f

∂x
+O(t2).

Hence,

Vt = V0 +

∫
D0

(
t tr

∂f

∂x
+O(t2)

)
dx,

which proves the lemma, since

tr
∂f

∂x
= ∇ · f = div f .

�

Remark 4.4. A particular case of the previous lemma is Corollary 3.7.

Corollary 4.5. If for (4.1) ∇ · f ≡ 0 then the corresponding flow conserves the phase volume.

A vector field with the condition ∇ · f ≡ 0 is called the vector field without sources and sinks,
because, due to the Gauss theorem, the flow of such vector field through any closed hypersurface S is
equal to zero: ∫

S
f · n dS =

∫
D
∇ · f dx,

where n is the unit outward normal to the hypersurface S.

Example 4.6. Consider a Hamiltonian system

ẋi =
∂H

∂pi
(x,p), i = 1, . . . , k,

ṗi = −∂H
∂xi

(x,p), i = 1, . . . , k,

where H ∈ C(1)(R2k;R2k) is called the Hamiltonian. Using the previous I immediately get
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Lemma 4.7 (Liouville’s theorem). A Hamiltonian system conserves the phase volume.

Exercise 4.3. Prove the lemma.

9. First integrals of (4.1).
Together with (4.1) consider a continuously differentiable function u : X −→ R. If ϕ is a solution

to (4.1) then u(ϕ(t)) = w(t) becomes a function of one variable t. Now consider the derivative

dw

dt
= u̇(x) =

∑
j

∂u

∂xj
ẋj = ∇u · f .

This derivative is called a derivative of u along the vector field f (and is a generalization of the
directional derivative, which takes into account only the direction and not the length of the vectors)
or, sometimes, Lie derivative, after the Norwegian mathematician Sophus Lie (the last name is read
“Lee”). Important to note that I sometimes can calculate it without knowing the actual solutions
to (4.1).

Lemma 4.8. Let u̇(x) be the derivative along the vector field (4.1), and u̇(x) ≤ 0 (u̇(x) ≥ 0) in some
U ⊆ X. Then u(x) does not increase (decrease) along any orbit of (4.1) in U .

Exercise 4.4. Prove this lemma.

Definition 4.9. Function u is called a first integral of (4.1) if it is constant along any orbit of (4.1).

Lemma 4.10. Function u is a first integral of (4.1) if and only if

u̇(x) = 0

along the vector field (4.1).

Exercise 4.5. Prove this lemma.

Let me say a few words about the geometric interpretation of the condition

u̇(x) = ∇u · f = 0.

The vector ∇u (recall that it is called the gradient) is orthogonal to the hypersurface S : u(x) = const,
which means that vector f is tangent to S, and therefore an orbit passing through x ∈ S stays on S,
which means that u(x) ≡ const on this orbit.

Example 4.11. For a Hamiltonian system the Hamiltonian H is a first integral.

Example 4.12. The movement of a particle with one degree of freedom in the potential field is
described by Newton’s equation

mẍ = −U ′(x).

The function
mẋ2

2
+ U(x) = E

is a first integral (check this) and represents the full energy of the system (the sum of the kinetic and
potential energies).
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Exercise 4.6. Find all independent first integrals of

ẋ1 = 0, . . . , ẋk−1 = 0, ẋk = 1.

(Function u1(x), . . . , um(x), m ≤ k are called independent in U if none of them can be expressed
through the others.)

Exercise 4.7. Prove that in a neighborhood of a point a such that f(a) ̸= 0 there exist k − 1
independent first integrals of (4.1).

4.2 Lyapunov stability (second Lyapunov method)

Consider the system
ẋ = f(x), x(t) ∈ X ⊆ Rk, f : X −→ Rk, (4.2)

and assume that x̂ is such that f(x̂) = 0, i.e., x̂ is an equilibrium.

Definition 4.13. Equilibrium x̂ is called Lyapunov stable if for any ϵ > 0 there exists a δ(ϵ) > 0 such
that

|x(t;x0)− x̂| < ϵ, t > 0,

whenever
|x0 − x̂| < δ.

Equilibrium x̂ is called asymptotically stable if it is Lyapunov stable and, additionally,

|x(t;x0)− x̂| → 0, t→ ∞.

Otherwise, x̂ is called unstable.

Exercise 4.8. Formulate an ϵ–δ definition of an unstable equilibrium.

Example 4.14. Recall that in the case of the linear system with constant coefficients ẋ = Ax, x(t) ∈
R2, I classified different phase portraits as sinks (stables nodes and foci), sources (unstable nodes and
foci), saddles, and centers. Naturally I have that the sinks are asymptotically stable, the centers
are Lyapunov stable but not asymptotically stable, sources and saddles are unstable. Moreover, the
terminology stable, asymptotically stable, and unstable linear systems implies that the stability of the
whole system coincides with the stability of the trivial equilibrium (0, 0) of this system.

Exercise 4.9. Prove that if any solution of a linear homogeneous system of ODE with constant
coefficients is bounded for t→ ∞ then the trivial solution is Lyapunov stable.

Example 4.15. For a scalar differential equation

ẋ = f(x), x(t) ∈ X ⊆ R,

the fact that f ′(x̂) < 0 implies asymptotical stability of x̂ and f ′(x̂) > 0 implies instability of x̂.

Exercise 4.10. Consider a scalar differential equation ẋ = f(x), x(t) ∈ X ⊆ R and assume that x̂
is an equilibrium. Prove that if f ′(x̂) < 0 then x̂ is asymptotically stable, and if f ′(x̂) > 0 then x̂ is
unstable. Can you determine stability if f ′(x̂) = 0? Consider the equation ẋ = rx(1−x/K), r,K > 0,
find the equilibria and determine their stability.
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I will be studying the stability of equilibria using the so-called Lyapunov functions, but first I will
need several auxiliary facts. First, a smooth function V : U ⊆ Rk −→ R is called positive definite in
U if V (x) > 0 for x ∈ U, x ̸= x̂ and V (x̂) = 0. For example, V (x) =

∑
j x

2
j is positive definite in any

neighborhood of the origin. If V (x) < 0 in U\{x̂} and V (x̂) = 0 then V is called negative definite.
If the conditions > 0 or < 0 are replaced with ≥ 0 and ≤ 0, then V is called positive of negative
semi-definite (or non-negative and non-positive definite).

Example 4.16. Consider the quadratic form

V (x) = Ax · x =
∑
i,j

aijxixj ,

where ajk = akj such that A = A⊤ is a symmetric real matrix. This quadratic form is called positive
definite if

Ax · x > 0, x ̸= 0.

A necessary and sufficient condition for this quadratic form to be positive definite is to have all
the eigenvalues of A positive, which I prove next.

Lemma 4.17. If A = A⊤ is a real matrix, then for any x ∈ Rk

α|x|2 ≤ Ax · x ≤ β|x|2,

where α and β are the minimal and maximal eigenvalues of A.

Proof. I will use the fact that if A is real symmetric then there exists an orthogonal matrix T such
that TT⊤ = I and

T⊤AT = Λ,

where Λ = diag(λ1, . . . , λk), and λj , j = 1, . . . , k are the real eigenvalues of A.
I have, putting x = Ty,

Ax · x = ATy · Ty = T⊤ATy · y =

= Λy · y =

k∑
j=1

λjy
2
j ,

such that
α|y|2 ≤ Ax · x ≤ β|y|2.

Since the orthogonal transformation preserves the length: |x|2 = |Ty|2 = |y|2, this concludes the
proof. �

Definition 4.18. A positive definite in a neighborhood U of x̂ function V is called Lyapunov function
for x̂ if

V̇ (x) ≤ 0, x ∈ U.

It is called a strict Lyapunov function for x̂ if

V̇ (x) < 0, x ∈ U, x ̸= x̂.
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Theorem 4.19 (Lyapunov). Consider (4.2) and let x̂ be an equilibrium. Then x̂ is Lyapunov stable
if there exists a Lyapunov function for x̂ and asymptotically stable if there exists a strict Lyapunov
function for x̂.

Proof. Without loss of generality assume that x̂ = 0 and pick ϵ > 0 such that the ball Bϵ : |x| ≤
ϵ ⊆ U . Let Sϵ be the boundary of Bϵ. Since Sϵ is compact, V is continuous, V (x) > 0 on Sϵ then
minx∈Sϵ V (x) = β > 0. Consider another ball Bδ : |x| ≤ δ ⊆ U . Since V (0) = 0, I can always choose
δ > 0 such that V (x) < β for x ∈ Bδ. I need to show that if |x0| ≤ δ then |x(t;x0)| ≤ ϵ for t > 0.
Since V̇ (x) ≤ 0 then V (x0) < β implies that V (x) < β on the positive orbit x(t;x0), t > 0. Therefore,
the orbit starting in Bδ cannot cross the boundary of Bϵ because V (x) ≥ β on Sϵ.

To prove the asymptotic stability, I pick the same balls Bϵ and Bδ and consider w(t) = V (x(t;x0)).
Since V̇ ≤ 0 then w(t) is non-increasing and bounded, and hence there exists a limit A. If A = 0 then
nothing to prove. Assume that A > 0. I have w(t) ≥ A for all t > 0 and therefore there is α > 0
such that |x(t;x0)| ≥ α because otherwise the orbit from x0 would be close to zero and hence V (x)
would be close to zero. In the set α ≤ |x| ≤ ϵ by the assumption I have that V̇ (x) ≤ −m < 0, and
therefore w′(t) ≤ −m. Integrating yields w(t) ≤ w(0) −mt, which becomes negative for sufficiently
large t, which contradicts w(t) ≥ 0. �

It is almost immediate to prove a converse of Lyapunov’s theorem: If a positive definite function
V has a positive semi-definite derivative along the vector field f , than the equilibrium is unstable
(do this). However, in specific situations it is usually impossible to find such V . Note also that for
an equilibrium to be unstable is it enough to have just one initial condition x0 close to x̂ such that
x(t;x0) leaves a neighborhood of û for t > 0. This allows to find a better criterion for an equilibrium
to be unstable. This criterion is sometimes called the Chetaev instability theorem.

Theorem 4.20 (Chetaev). Let U be a neighborhood of x̂, U1 ⊂ U , and x̂ ∈ ∂U1, boundary of U1. Let
V ∈ C(1)(U1;R) be such that

V (x) > 0, V̇ (x) > 0, x ∈ U1,

and V (x) = 0 at those boundary points of U1 that lie inside U . Then x̂ is unstable.

Proof. Consider a positive orbit x(t;x0), t > 0, x0 ∈ U1, and finction w(t) = V (x(t;x0)) along this
orbit. I have w(0) > 0 and w′(t) = V̇ (x) > 0 and therefore this orbit cannot cross the boundary of
U1 where V (x) = 0 and eventually must leave U1. Since U1 has points arbitrary close to x̂, therefore
this equilibrium is unstable. �

Remark 4.21. There are no universal methods to find either Lyapunov or Chetaev functions (al-
though often special form of a system of ODE hints for a form of Lyapunov function, there are books
devoted these special cases), so it is a good idea to start with something simple like ax21 + bx22 or
ax41 + bx42 and so on. Often a positive definite quadratic form for an appropriate matrix A is a good
choice.

Exercise 4.11. Study the stability properties of the trivial solution in the following problems:

1. (Stable)

ẋ1 = x2 − x1 + x1x2,

ẋ2 = x1 − x2 − x21 − x32.
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2. (Stable)

ẋ1 = 2x32 − x51,

ẋ2 = −x1 − x32 + x52.

3. (Unstable, try V (x) = x1x2)

ẋ1 = x1x2 − x31 + x32,

ẋ2 = x21 − x22.

4. (Asymptotically stable, try V (x) = ax21 + bx22 and determine a, b)

ẋ1 = x1x
2
2 −

1

2
x31,

ẋ2 = −1

2
x32 +

1

5
x21x2.

5. (Unstable, try V (x) = x22 − x21)

ẋ1 = −x1 − x1x2,

ẋ2 = −x32 − x31.

6.

ẋ1 = −x1x42,
ẋ2 = x2x

4
1.

7.

ẋ1 = x1 − x1x
4
2,

ẋ2 = x2 − x21x
3
2.

Exercise 4.12. Determine the stability properties of (x, ẋ) = (0, 0) for the equation

ẍ+ xn = 0, n ∈ N.

4.3 Stability of linear systems

Consider the system
ẋ = Ax, x(t) ∈ Rk, (4.3)

with a real matrix A. I already proved in the previous chapter that the trivial equilibrium x̂ = 0 of
this system is asymptotically stable if and only if the real parts of all the eigenvalues of A are negative.
Let me prove this fact again using a Lyapunov function. First, I will present an auxiliary fact that
any matrix can be put in an almost diagonal form.

95



Theorem 4.22. Any matrix A can be represented as

T−1AT = Λ+Bϵ,

where Λ is a diagonal matrix with the eigenvalues of A on the main diagonal, and matrix Bϵ has the
entries |bij | < ϵ, where ϵ > 0 can be chosen arbitrarily small.

Proof. Any matrix A can be put in the Jordan canonical form

P−1AP = J ,

where J = diag(J1, . . . ,Js). For each Jordan’s block Jα consider the matrix of the same size Rα =
diag(a1, . . . , al), then

R−1JR = diag(λ, . . . , λ) +


0 a2a

−1
1 0

0 a3a
−1
2 0

. . . ala
−1
l−1

0

 .
Choose a2a

−1
1 = . . . = ala

−1
l−1 = ϵ.

If R = diag(R1, . . . ,Rs) then
R−1JR = Λ+Bϵ.

Now take T = PR, which concludes the proof. �

Theorem 4.23. The equilibrium x̂ = 0 of (4.3) is asymptotically stable if and only if Reλj < 0 for
all j = 1, . . . , k, where λj are the eigenvalues of A.

Proof. By using x = Ty from the previous theorem, system (4.3) becomes

ẏ = (Λ+Bϵ)y.

Consider

V (x) = y · y =

k∑
j=1

|yj |2.

This function is positive definite in any neighborhood of 0. I have

V̇ (x) =
d

dt
(y · y) = ẏ · y + y · ẏ =

= (Λ+Λ)y · y +Bϵy · y + y ·Bϵy

≤ −2(α− kϵ)
k∑
j=1

|yj |2 = −2(α− kϵ)V (x).

Here I used
k∑
j=1

(λj + λj)|yj |2 = 2

k∑
j=1

Reλj |yj |2 ≤ −2αV (x), Reλj ≤ −α,
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and

|Bϵy · y| ≤ ϵ

k∑
i,j=1

|yi||yj | = ϵ

 k∑
j=1

|yj |

2

≤ kϵ

k∑
j=1

|yj |2.

The same estimate holds for the last term. Pick 0 < ϵ < α/k, then V̇ is negative definite.
To finish the proof, I can assume that Reλj ≥ 0 for some j. Then the solution eλjtvj , where

vj is the corresponding eigenvector, does not tend to zero, and therefore the trivial solution is not
asymptotically stable. To practice Chetaev’s theorem, I will give an alternative proof of this fact.

Let λk have positive real part. I can always find a matrix T that puts A in a triangular form Λ
such that the last diagonal element is λk, i.e., I have the differential equation

ẏk = λkyk.

Let me take the Chetaev function in the form

V (x) = |yk|2.

I have
V̇ (x) = ẏk · yk + yk · ẏk = 2Reλk|yk|2.

As U1 let me take yk ̸= 0. Since y = T−1x, then yk =
∑

j cjxj , where cj are some complex constants,
and the boundary of U1 is defined by

k∑
j=1

xj Re cj = 0,

k∑
j=1

xj Im cj = 0.

Hence ∂U1 contains 0, and V (x) > 0 and V̇ (x) > 0 for x ∈ U1, V (x) = 0 on ∂U1, then all the
conditions of the Chetaev theorem are satisfied and I proved that the origin is unstable. �

Actually, I showed even more than it was stated in the theorem. I also showed that

V̇ (x) ≤ −2βV (x), β = α− kϵ.

Since V (x) is positive definite and can be written as a quadratic form

V (x) =
k∑

i,j=1

aijxixj ,

then there exists a c > 0 such that V (x) ≥ c|x|2 (see Lemma 4.17). These two fact together imply
that

|x(t;x0)| ≤ Ce−βt, C > 0,

i.e., that the convergence to the equilibrium is exponential.

Exercise 4.13. Prove
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Lemma 4.24. Let x̂ = 0 be an equilibrium with the Lyapunov function V such that

V̇ (x) ≤ −γV (x), V (x) ≥ A|x|η,

in some neighborhood U of 0. Here A, γ, η are positive constants. Then there exists C > 0 such that

|x(t;x0)| ≤ Ce−γt/η, t > 0,

if x0 is sufficiently close to 0.

All of the results in this section were already proved by using the explicit form of the solution
etAx0 to the linear system. However, the value of this approach in that it can be transferred without
much change onto nonlinear systems, see the next section.

4.4 Stability of equilibria of nonlinear systems by linearization (first
Lyapunov method)

Consider now
ẋ = f(x), x(t) ∈ X ⊆ Rk, f : X −→ Rk, (4.4)

and let x̂ be an equilibrium. Assuming f ∈ C(1) I can represent it with Taylor’s formula around x̂

f(x) =
∂f

∂x
(x̂)(x− x̂) +O(|x− x̂|2) = A(x− x̂) +O(|x− x̂|2).

Here

∂f

∂x
=


∂f1
∂x1

. . . ∂f1
∂xk

...
. . .

...
∂fk
∂x1

. . . ∂fk
∂xk


is the Jacobi matrix of f .

Using the change of variables y = x− x̂ and dropping the terms of the order o(|x− x̂|) I end up
with the linear system

y = Ay, (4.5)

which is called the linearization of (4.4) around x̂. I know that the stability of the trivial solution to
(4.5) is determined by the eigenvalues of matrix A. It turns out that the eigenvalues of A also allow
to infer the stability of x̂ in some cases.

Theorem 4.25 (Lyapunov). If the origin of the linearized system is asymptotically stable then x̂ is
also asymptotically stable. If the Jacobi matrix has at least one eigenvalue with Reλj > 0, then x̂ is
unstable.

Proof. Using the notations as above and assuming, without loss of generality, that x̂ = 0, I have

ẋ = Ax+ g(x), |g(x)| ≤ C1|x|2.

As a Lyapunov function I take exactly the same V , which was used for the linear system in the previous
section. After the change of variables x = Ty I have

ẏ = (Λ+Bϵ)y + h(y), h(y) = T−1g(Ty).
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Calculating V̇ yields
V̇ (x) = A1 +A2,

where A1 ≤ −γ|x|2, γ > 0 is from the linear system, and

A2 = h(y) · y + y · h(y).
I have that

A2 ≤ C3|x|3,
since |y| ≤ C2|x| and |h(y)| ≤ C1C2|x|2. This implies that

V̇ (x) ≤ −|x|2(γ − C3|x|).
If |x| < γ/(2C3), then

V̇ (x) ≤ −γ
2
|x|2,

which proves the asymptotical stability of x̂. Moreover, I showed that the convergence is exponential
(the details are left to the reader).

To prove the second statement of the theorem, assume that Reλk > 0 and take V (x) = |yk|2 (see
the previous section for the details). Then,

V (0) = 0, V̇ (x) = 2Reλk|yk|2 + h(y),
where |h(y)| ≤ C|y|3. I have

V̇ (x) ≥ (2Reλk − C|yk|)|yk|2,
at the point y1 = . . . = yk−1 = 0, which shows that V (x) is a Chetaev function and hence the origin
is unstable. �

This important relation between linear and nonlinear systems is a first results in a number of deep
connections (see also Appendix to this chapter).

Definition 4.26. An equilibrium point x̂ is called hyperbolic if the Jacobi matrix evaluated at this
point has no eigenvalues with zero real part.

Using this definition Lyapunov’s theorem from this section can be restated as

Theorem 4.27. Stability of a hyperbolic equilibrium coincides with the stability of its linearization.

Exercise 4.14. For which α the system

ẋ1 = x2 − αx1 − x51,

ẋ2 = −x1 − x52,

has a stable equilibrium at the origin?

Exercise 4.15. Consider

ẋ1 = −x1 −
x2

log(x21 + x22)
1/2

,

ẋ2 = −x2 +
x1

log(x21 + x22)
1/2

.

Show that in full nonlinear system the origin is a spiral, whereas it is a node in linearization. Hint:
use the polar coordinates.

Exercise 4.16. Can an asymptotically stable equilibrium become unstable in Lyapunov’s sense under
linearization?
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4.5 More on the notion of stability

Up till now I discussed the stability properties of equilibria. Recall that the equilibria correspond to
the constant solutions to the original system. Very naturally, the definitions of asymptotic stability
or Lyapunov stability can be generalized for an arbitrary solution to

ẋ = f(t,x). (4.6)

To wit, a solution ϕ to (4.6) is called Lyapunov stable if for any ϵ > 0 and t0 there exists a
δ(ϵ, t0) > 0 such that

|ϕ(t)− x(t; t0,x0)| < ϵ, t > 0,

whenever
|ϕ(t0)− x0| < δ.

Here x(t; t0,x0) is the solution to (4.6) with x(t0) = x0.
Solution ϕ to (4.6) is called asymptotically stable if it is Lyapunov stable, and, additionally

|ϕ(t)− x(t; t0,x0)| → 0, t→ ∞.

Example 4.28. Each solution to ẋ = 0 is Lyapunov stable but not asymptotically stable.

Example 4.29. Each solution to ẋ + x = 0 is asymptotically stable. Indeed, the general solution is
x(t) = Ce−t, and for two initial conditions x01, x

0
2 I have

x1(t) = x01e
−(t−t0), x2(t) = x02e

−(t−t0),

from where
|x2(t)− x1(t)| = |x01 − x02|e−(t−t0) → 0.

Exercise 4.17. Is the solution to

ẋ = 4x− t2x, x(0) = 0

Lyapunov stable, asymptotically stable, or neither?

Analysis of stability of an arbitrary solution ϕ to (4.6) can be reduced to the analysis of the trivial
solution of some new system, which is obtained from (4.6) by the linear change x(t) = y(t) + ϕ(t).
For the new variable I find

ẏ = f(t,y + ϕ)− f(t,ϕ) = g(t,y), (4.7)

which clearly has the trivial solution y(t) = 0 for all t. Moreover, the type of stability of ϕ coincides
with the type of stability of the trivial solution y(t) = 0.

I can also consider a linearization of (4.7) around y(t) = 0, which in general takes the form

ẏ = A(t)y,

with a non-constant A(t). As it was mentioned before, I cannot make any conclusions by the eigen-
values of A(t) if it is time dependent. If it is, however, constant, I can prove a very similar fact: if the
matrix of linearization is constant and has all the eigenvalues with Reλj < 0 then the trivial solution
of the original problem is asymptotically stable; if there is at least one eigenvalue with Reλj > 0 then
the trivial solution of the original problem is unstable.
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Example 4.30. Study the stability of the periodic solution to

...
x + x = cos t.

The general solution to this equation, obtained in the usual fashion, is given by

x(t) = C1e
−t + e

t
2 (C2 cos

√
3

2
t+ C3 sin

√
3

2
t) +

1

2
(cos t− sin t),

therefore the only periodic solution is

ϕ(t) =
1

2
(cos t− sin t).

Let
x(t) = ϕ(t) + y(t).

I get
...
y + y = 0,

and the trivial solution has eigenvalues −1, (1± i
√
3)/2, and therefore the trivial solution is unstable,

which implies the instability of the original periodic solution.

Exercise 4.18. Is the π-periodic solution to the system

x′ = x− y, y′ = 2x− y + 6 sin2 t

Lyapunov stable?

Exercise 4.19. Consider
ẋ = A(t)x+ f(t),

with A,f continuous on R. Prove that if one solution to this problem is stable (asymptotically stable)
then any solution is stable (asymptotically stable).

Exercise 4.20. Decide whether the solution x1(t) = cos t, x2(t) = 2 sin t to the system

ẋ1 = ln

(
x1 + 2 sin2

t

2

)
− x2

2
,

ẋ2 = (4− x21) cos t− 2x1 sin
2 t− cos3 t,

stable or not.

Exercise 4.21. Let ϕ be a T -periodic solution to

ẋ = f(x).

Show that the linearization of this system around ϕ is a linear non-autonomous system with a T -
periodic matrix.
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4.6 Limit sets and Lyapunov functions

4.6.1 Analysis of the pendulum equation

I am going to start with a motivating example.

Example 4.31. Consider the pendulum equation

θ̈ + k sin θ = 0,

where θ is the angle of the pendulum rod from the vertical and k > 0 is a constant, k = g/l, where
g ≈ 10m/sec2, and l in the length of the rod. It is assumed that there are no damping or external
forces acting on the pendulum. For simplicity assume that k = 1. In the coordinates (x, y) = (θ, θ̇), I
have the system

ẋ = y,

ẏ = − sinx.

The equilibria of this system are given by ŷ = 0 and x̂j = jπ, n = 0,±1,±2, . . .. (This is true if I
consider this system on the state space R2, but since x = θ is the angle, so it is defined only up to
mod 2πn, and a more natural phase space for my pendulum is the cylinder S1×R, in this case I have,
as it should be expected, only two equilibria, x̂ = 0 and x̂ = π, which correspond to the lower and
upper equilibrium positions of the pendulum respectively).

I can try to figure our stability properties of these equilibria by using the first Lyapunov method
(linearization). For this, I find

∂f

∂x
=

[
0 1

− cosx 0

]
.

I have
∂f

∂x
(0, 0) =

[
0 1
−1 0

]
,

with the eigenvalues λ1,2 = ±i, and
∂f

∂x
(0, π) =

[
0 1
1 0

]
,

with the eigenvalues λ1,2 = ±1 (moreover, the eigenvector corresponding to +1 is (1, 1)⊤, and the
eigenvector corresponding to −1 is (−1, 1)⊤).

So, what do I know exactly from the theorems I proved above? The linearization theorem does
not tell me anything about the equilibrium (0, 0), because it is the center in the linear system (a
non-hyperbolic rest point). The other points are saddles in the linearized system, and therefore, by
my main (Lyapunov) theorem, are also unstable in the nonlinear system (the proved theorems do not
tell me precisely what is the structure of the orbits of the nonlinear system around these equilibria,
but more involved theorems, see Appendix, tell me that it will look approximately like the saddle
with the stable and unstable subspaces of the linear case being tangent to some stable and unstable
manifolds in the nonlinear case).

Let me now take advantage of Example 4.12. In particular, consider the function

E(x, y) =
y2

2
− cosx.

102



A simple computation shows that this function is a first integral of the system, since along the orbits

Ė = 0.

Therefore, the orbits lay in the level sets of this function. Note that E(0, 0) = −1, and if I take
V (x, y) = E(x, y) + 1, then I have that V (0, 0) = 0, V (x, y) is positive definite anywhere except
at the equilibria (2πj, 0) of the systems, and V̇ = 0. Therefore, V (x, y) is a Lyapunov function for
(x̂, ŷ) = (2πj, 0), including the most interesting point (0, 0), and therefore (0, 0) is Lyapunov stable.

Is it asymptotically stable? Actually, no, since I have that cosx = 1− x2

2 +O(|x|4), then

V (x, y) =
x2

2
+
y2

2
+ . . . ,

where the dots denote terms of the order bigger than 2. Therefore (and if you are not comfortable with
this heuristic reasoning you should look up Morse’s lemma), for x, y close enough to zero, the level sets
of V correspond to slightly deformed circles, and the equilibrium (0, 0), while being Lyapunov stable,
is not asymptotically stable (see the figure below, I will show soon how make such figures without
resorting to a computer).

Now introduce damping in the system, so the equation becomes

θ̈ + sθ̇ + k sin θ = 0,

where s > 0 is the constant describing damping.
The system takes the form

ẋ = y,

ẏ = −sy − sinx,

with the Jacobi matrix
∂f

∂x
=

[
0 1

− cosx −s

]
.

Note that I have exactly the same equilibria. In the linearized system the equilibrium (0, 0) becomes
either stable focus (s < 2), or stable node (s > 2) and therefore in both systems asymptotically
stable. The other equilibrium is still a saddle and hence unstable. So, it is quite natural to assume
that (0, 0) attracts (almost) all the orbits from the cylinder. But I cannot make this conclusion by the
linearization technique, which is an essentially local tool. It is the Lyapunov function (the first integral
in this case), which allowed me to draw the global structure of the phase portrait for the undamped
pendulum. Therefore, the next natural thing is to look for a Lyapunov function that would show me
something global about the system with damping.

The level sets of the first integral helped to see the structure of the orbits in the system without
damping. If, however, V is a strict Lyapunov function, the sets of the form Uα = {x : V (x) ≤ α} can
help to see the sets of initial conditions that actually converge to the equilibrium when t → ∞. Let
me introduce some terminology.

Definition 4.32. Let x̂ be an asymptotically stable equilibrium of ẋ = f(x). Then the basin of
attraction of x̂, denoted by B(x̂), is defined as B(x̂) = {x0 : x(t;x0) → x̂, t→ ∞}.
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Figure 4.1: Level sets of V (x, y) = y2

2 + 1− cosx in 3D and 2D (the top row), and the phase flow of
the system on the cylinder and on the plane (bottom row)

A set D ⊆ X ⊆ Rk is called invariant with respect to the flow {φt} if for any initial condition
x0 ∈ D the corresponding orbit γ(x0) ⊆ D, it is called forward invariant if γ(x0) is replaced with
γ+(x0), the positive semi-orbit through x0, and it is called backward invariant if γ(x0) is replaced with
γ−(x0), the negative semi-orbit.

A forward invariant set that is bounded is called a trapping region.

Using the introduced definitions, I immediately conclude that if V is a strict Lyapunov function,
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then Uα ⊆ B(x̂), and if V is a strict Lyapunov function in U , then it is impossible to have cycles in
U (can you formally prove it?). Moreover, if V is strict on all the phase space X then x̂ attracts all
the orbits, and called globally asymptotically stable. If V is a Lyapunov function, then Uα is forward
invariant set and if V (x) → ∞ as |x| → ∞ then Uα is a trapping region.

Exercise 4.22. Prove all the statements in the above paragraph.

Now back to the pendulum example. Let me try the same Lyapunov function,

V (x, y) =
y2

2
+ 1− cosx.

I find that V̇ (x, y) = −sy2, which is negative semi-definite, and hence not a strict Lyapunov function.
However, note that the set V̇ = 0 composed of the x-axis, and the only orbit, that starts in this set
and stays in this set (it is invariant) is (0, 0). Which means that V is “almost” strict, and actually
gives me the information about the basin of attraction of (0, 0). To formulate these reasoning in a
rigorous way, I will need an extra tool that turns out to be very helpful while studying dynamical
systems defined by ODE.

Exercise 4.23. Consider the pendulum equation with damping

θ̈ + sθ̇ + sin θ = 0, s > 0.

I know that the derivative of V (x, y) = y2

2 +1− cosx along the orbits is negative semi-definite, which
proves that the origin is Lyapunov stable. On the other hand I also know that the origin is actually
asymptotically stable if s > 0. Modify V to construct a strict Lyapunov function for (0, 0).

Exercise 4.24. Consider the following system

x′ = 2y3 − x5, y′ = −x− y3.

Is it globally asymptotically stable?

4.6.2 Limit sets

Definition 4.33. The ω-limit set of x0 ∈ X is

ω(x0) = {y ∈ X : lim inf
t→∞

|x(t;x0)− y| = 0}.

The α-limit set of x0 ∈ X is

α(x0) = {y ∈ X : lim inf
t→−∞

|x(t;x0)− y| = 0}.

The definition above means, e.g., for the ω-limit set, that for each y ∈ ω(x0) there exists a sequence
t1 < t2 < . . . < tn < . . ., where tn → ∞ that the sequence

(
x(tn;x0)

)
converges to y, and similarly

for α-limit set.

Lemma 4.34.
ω(x0) =

∩
t∈R

γ+(x(t;x0)), α(x0) =
∩
t∈R

γ−(x(t;x0)).
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Exercise 4.25. Prove this lemma.

Theorem 4.35. The limit sets are closed and invariant. If γ+(x0) is bounded then ω(x0) is non
empty and connected. If γ−(x0) is bounded then α(x0) is non empty and connected.

Exercise 4.26. Prove Theorem 4.35.

Exercise 4.27. Can you give an example of an orbit which has a non-empty disconnected omega
limit set?

Exercise 4.28. Consider the system

ṙ = r(a− r), θ̇ = b, a > 0, b ∈ R,

where (r, θ) are polar coordinates in the plane. Find the omega limit sets for any initial condition on
the plane.

Answer the same question for

ṙ = r(a− r), θ̇ = sinθ +(r − a)2, a > 0.

Exercise 4.29. A gradient system is the system of the form

ẋ = − gradV (x) = −∇V (x),

where V : X −→ R is a C(2) function. Prove

Theorem 4.36. Let x̂ be an isolated minimum of V . Then x̂ is an asymptotically stable equilibrium
of the gradient system.

Theorem 4.37. Let y be an α or ω limit point of a solution to the gradient system. Then y is an
equilibrium.

Using the notions of the limit sets I shall prove the so-called invariance principle, which is usually
attributed to Krassovkii and LaSalle1.

Theorem 4.38 (Invariance principle). Let V be continuously differentiable, U = {x ∈ X : V (x) < α}
for some real number α and V be continuous on ∂U . Let V̇ (x) ≤ 0 for x ∈ U . Let Q = {x ∈
U : V̇ (x) = 0} and let M be the largest invariant set in Q. Then every positive orbit that starts in U
and remains bounded has its ω-limit set in M .

Proof. Let x0 ∈ U and γ+(x0) be bounded. Then the fact that V̇ (x) ≤ 0 and the definition of U
imply that γ+(x0) ∈ U , i.e., U is positive invariant. Consequently, there exists a limit V (x(t;x0)) = β
when t→ ∞. The continuity of V implies that V (y) = β for any y ∈ ω(x0). Since ω(x0) is invariant
then V (x(t;y)) = β for all t ∈ R, therefore ω(x0) ⊆ Q and ω(x0) ⊆M . �

Corollary 4.39. Let V : U −→ R be a Lyapunov function for x̂, U be positive invariant, and M ⊆ U
consists only of x̂. Then x̂ is asymptotically stable, and U ⊂ B(x̂).

1A special case of this principle was originally published by Barbashin and Krasovskii in 1952, the full version by
Krassovskii in 1959 and, independently, by LaSalle in 1960
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Let me apply this corollary to the pendulum with damping. I calculated that for

V (x, y) =
y2

2
+ 1− cosx,

the derivative with respect to the vector field is given by

V̇ (x, y) = −2sy2.

The set Q in this case is given by (x, 0) for any x ∈ (−π, π) if I consider the cylinder as the phase space.
The half axis y = 0, x > 0 is not invariant under the flow of the system, and therefore the only invariant
set in this case M = (0, 0), which, according to the corollary above, is therefore asymptotically stable,
and (almost) any orbit on the cylinder converges to this equilibrium as t→ ∞.

Figure 4.2: The phase portrait of the pendulum with damping on the plane and on the cylinder

Exercise 4.30. Determine the stability properties of the origin for

ẋ = −x3 + 2y3,

ẏ = −2xy2.

Hint: Start with V (x, y) = x2 + cy2 and determine c.

Exercise 4.31. Determine the stability properties of the origin for

ẋ = −y − x3,

ẏ = x5.
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4.7 One dimensional movement of a particle in a potential field

As I mentioned in Example 4.12 a one dimensional movement of a partial in a potential field is
described by the second Newton’s law

mẍ = −U ′(x). (4.8)

This equation is equivalent to the system

ẋ = y, mẏ = −U ′(x),

which has the first integral
my2

2
+ U(x) = E,

the physical interpretation of this relation is the law of the total energy, which is equal to the sum of
kinetic and potential energies. From the first integral I immediately get

Corollary 4.40. Equation (4.8) can be integrated as

ẋ = ±
√

2

m
(E − U(x)) =⇒ ±

√
m

2

∫ x

x2

ds√
E − U(s)

= t− t0,

where the sign is chosen according to the initial velocity of the particle. Here E = K + U is the
constant total energy.

The last corollary actually implies that the graph of U is all what I need to sketch the phase plane
of the second order autonomous system. I will show how to do this be way of an example. Let me
assume that the potential U looks like in Figure 4.3, top panel. So I assume that U ∈ C(2) and there
are only two points x̂1 and x̂2 at which U ′(x) = 0, I also assume that U(−∞) = ∞, U(∞) = −∞.
Due to the form of the first integral I must have that U(x) ≤ E, and hence the movement with the
given full energy E can happen only when U(x) ≤ E; in my specific example this corresponds to the
intervals (x1, x2) and (x2,∞). At the points where U(x) = E I have that ẋ = 0, that is the velocity
of the particle is equal to zero, these points are called the stop points.

Assume that initially x0 ∈ [x1, x2] and therefor it will belong to the interval for all times t ∈ R. If
ẋ(0) > 0 then initially I have the movement from lent to right, such that√

m

2

∫ x

x0

dx√
E − U(x)

= t

for small enough t > 0. At the moment

t1 =

√
m

2

∫ x2

x0

dx√
E − U(x)

my particle will arrive at the point x2. Note that t1 < ∞ since U ′(x2) ̸= 0 and hence E − U(x) ∼
−U ′(x2)(x − x2) for x → x2 and the integral converges. This means that the particle turns left and
now her movement is described by

t = t1 −
√
m

2

∫ x

x2

dx√
E − U(x)
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until it arrives to x1. The period T of the particle oscillations equals twice the time required to move
from x1 to x2, that is

T (E) =
√
2m

∫ x2(E)

x1(E)

dx√
E − U(x)

,

where U(xi(E)) = E, i = 1, 2.

x

x

ẋ

U(x)

x1 x2 x3

E

x̂2

Figure 4.3: Inferring the phase portrait from the potential function

If the initial position of the particle with energy E is to the right of x3 and ẋ(0) < 0. Then,
analogously, the particle fist will move left up to the point x3, turns right, and now goes to the right
without turning back (this is called an infinite movement opposite to the oscillations with correspond
to the finite movement).

Let E0 = U(x̂2). Then if x0 < x̂2 then the particle will travel through the homoclinic separatrix
of the saddle x̂2 (what is time required to go through the whole separatrix?), if x0 > x̂2 then the
movement is again infinite. Therefore, separatrices separate finite from infinite movements in this
model.

The analysis of the example above implies that it is possible to have only centers and saddles in
the mechanical systems described by the Newton law (4.8), moreover the centers correspond to the
minima and the saddles to the maxima of the potential function.

Exercise 4.32. Consider the pendulum equation

θ̈ + sin θ = 0,

with the initial conditions θ(0) = a > 0, θ̇(0) = 0. Show that the period of the solution can be found
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as

T = 4

∫ a

0

dθ

(2 cos θ − 2 cos a)1/2
.

Use the last expression to show that

T = 2π

(
1 +

a2

16
+O(a4)

)
.

Is this solution Lyapunov stable?

Exercise 4.33. Consider the equation

ẍ+ 2aẋ+ x+ x3 = 0, 0 < a < 1.

If a = 0 then the system is conservative. Find its first integral V . If a ̸= 0 then the origin is
asymptotically stable, prove it using the linearization. Use V as a Lyapunov function for the equation
to show that the origin is stable and use the invariance principle to prove that it is asymptotically
stable. Use the specific form of V to find the basin of attraction of the origin and argue that it is
R2 (such systems, whose basin of attraction coincides with the whole state space, are called globally
asymptotically stable).

4.8 Appendix

4.8.1 Perron’s theorem

4.8.2 Stability of periodic solutions and other notions of stability

4.8.3 Big theorem of ODE theory

4.8.4 Classical mechanics with one degree on freedom

4.8.5 Replicator equation and mathematical biology
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